UG 6th Semester

CC- XIII (Plant Metabolism)

Unit-I

Long Question

- 1. Describe the biochemical reactions involved in the synthesis of of starch and sucrose. Are these two processes competing to each other? Explain.
- 2. discuss the role of regulatory enzymes in regulation of metabolism.
- 3. discuss the synthesis of sucrose and starch.
- 4. Explain Catabolism and anabolism with examples.

Short Notes

- 1. Allosteric enzymes
- 2. Isozymes
- 3. Regulation of metabolism
- 4. Covalent modification of enzymes
- 5. Differences Between Catabolism and Anabolism
- 6. catabolic and anabolic processes
- 7. Catabolism of sucrose and starch

Unit- II

Long Question

- 1. What part do chlorophyll, carbon dioxide and light play in synthesis of simple carbohydrates in green plants?
- 2. What are radioactive isotopes? How far the use of tracer C12 has been successful in tracing out various intermediate products of the dark phase of the photosynthesis?
- 3. Write note on structure of Chloroplast and Quantasomes.

- 4. Write note on Blackman's principle of limiting factors.
- 5. How would you prove experimentally the following:
- (a) Oxygen is evolved in photosynthesis.
- (b) Carbohydrate synthesis can not take place in the absence of chlorophyll.
- 6. Give an account of the process of photosynthesis.
- 7. How do plant utilise carbondioxide
- 8. Describe the mechanism by which plants convert CO2 to carbohydrates.
- 9. Describe the mechanism of conversion of solar energy into chemical energy in plants.
- 10. Explain recent views of the mechanism of photosynthesis in green plants. Discuss at least three evidences to support the view that photosynthesis takes place in two steps.
- 11. Describe the mechanisms of photophosphorylation in higher plants.
- 12. What are the raw materials of photosynthesis? How are they absorbed and utilised?

Explain the information obtained with the use of C14 and O18.

- 13. Give an account of the modern views on the mechanism of photosynthesis.
- 14. Describe cyclic and non cyclic electron transport and photophosphorylation.
- 15. Give an account of recent work on the mechanism of photosynthesis.
- 16. Write short note on chemosynthesis.
- 17. Write short note on photosynthetic phosphorylation.
- 18. Discuss briefly the mechanism of photosynthesis in green plants in the light of modern researches.
- 19. What do you understand by cyclic photophosphorylation.

- 20. What are limiting factors? Describe in detail their significance in relation to photosynthesis.
- 21. Give a comparative account of photosynthetic pigments of higher plants.
- 22. Explain Q cycle in photosynthesis.
- 23. Give an account of various factors affecting photosynthesis.
- 24. Describe the role of photosynthetic pigments in the light reaction of photosynthesis.
- 25. Explain the carbon reduction through C4 pathway. What are the specific adaptations found in C4 plants to make the process efficient?
- 26. Give an account of C3 cycle.

- 1. Accessory pigments and their role
- 2. Crassulacean Acid Metabolism
- 3. Q cycle
- 4. C4 pathway
- 5. Emerson's effect and path of carbon in photosynthesis.
- 6. Path of carbon in C3 and C4plants.
- 7. C4 plants.
- 8. Carbondioxide fixation in dark.
- 9. Thylakoid.
- 10. Law of limiting factors.
- 11. Importance of photosynthesis.
- 12. Photophosphorylation.
- 13. Role of water in photosynthesis
- 14. Krantz anatomy

- 15. Hill reaction
- 16. Emerson effect
- 17. Far red drop of photosynthesis
- 18. Site of photosynthesis
- 19. Photosynthetic pigments
- 20. Role of chlorophylls in photosynthesis
- 21.Carotenoids
- 22. Photosystems
- 23. Photochemical reaction centre
- 24. Antenna molecules
- 25. Light harvesting complexes
- 26. Cooperativity between PSI and PSII
- 27. Distinction between PSI and PSII
- 28. Cyclic photophosphorylation
- 29. Non-cyclic photophosphorylation
- 30. ATP synthesis in photosynthesis
- 31. Distinction between cyclic and non-cyclic
- 32. Carboxylative phase of calvin cycle
- 33. Reductive phase of calvin cycle
- 34. Regenerative phase of C3 cycle
- 35. C4plants
- 36. CAM plants
- 37. Photorespiration

- 38. Kranz anatomy
- 39. Distinction between C3and C4pathway
- 40. Comparison between photorespiration and dark respiration.

Unit-III

Long Question

- 1. Explain the steps of glycolysis.
- 2. Give a detailed account of electron transfer through the multienzyme complexes of the mitochondrial respiratory chain.
- 3. Describe the biochemical reactions involved in TCA cycle. Why TCA cycle is aerobic eventhough in none of its steps Oxygen is involved? Explain.
- 4. Narrate all the steps of pentose phosphate pathway. Mention the significance of such pathway.
- 5. Describe in detail the process of glycolysis. Add a note on the fate of pyruvate.
- 6. give an account of energy releasing process in glucose oxidation.
- 7. Explain Glycolysis. State where it occurs and its end products. In both aerobic and anaerobic respiration, determine the fate of these products.
- 8. Describe the process and role of citric acid cycle in living organisms
- 9. discuss various steps of Kreb's cycle. Also give the estimates of water, carbon dioxide and formation of ATP.
- 10. Discuss the basic mechanism by which ATP synthase generates ATP in the mitochondria
- 11. How does chemiosmosis leads to ATP synthesis in mitochondria? Explain.

- 1. Cyanide resistant respiration
- 2. Factors affecting respiration
- 3. Amphibolic role of TCA cycle
- 4. Regulation of glycolysis
- 5. role of uncouplers
- 6. Proton-motive Force
- 7. Alternate oxidase system
- 8. Regulation of TCA cycle
- 9. substrate level phosphorylation
- 10. significance of Oxygen in aerobic respiration in the context of ETS
- 11. comparison between fermentation and aerobic respiration
- 12. ETC
- 13. Respiratory substrates
- 14. racker's experiment
- 15. Boyer's conformational model
- 16. Jagendorf's experiment
- 17. ATP synthase
- 18. proton gradient
- 19. Regulation of PDH
- 20. NADH shuttle
- 21. Oxidative decarboxylation of pyruvate
- 22. Anaplerotic reactions in TCA cycle

Unit-IV

Long Question

- 1. Describe the reactions of glyoxylate cycle and mention its significance.
- 2. Give an account of biosynthesis of triglycerides.
- 3. explain the chain elongation reactions in fat synthesis
- 4. describe the beta- oxidation pathway of fatty acids.
- 5. What are lipids? Explain the distribution & degradation of lipid in plants
- 6. Draw beta-oxidation pathway. No description is required.
- 7. What are plant lipids? How are they biosynthesized? Discuss the mechanism of their biosynthesis
- 8. Describe degradation of fats. What is the fate of end product of their oxidation?
- 9. enumerate the steps leading to the synthesis of fatty acids
- 10. give an account of fat synthesis in plants
- 11. give an account of gluconeogenesis. Explain its role in mobilization of lipids during seed germination.

- 1. beta oxidation of fatty acids
- 2. Glyoxylate cycle
- 3. Difference between alpha and beta- oxidation of fats
- 4. Alpha- oxidation

5. role of gluconeogenesis in mobilization of lipids during seed germination

Unit-V

Long Question

- 1. What do mean by nitrogen fixation? Describe the physiology and biochemistry of biological nitrogen fixation.
- 2. Describe the mechanism of biological nitrogen fixation.
- 3. What is signal transduction? Describe its mechanism.
- 4. Discuss the process of biological nitrogen fixation in plants.
- 5. explain the key steps involved in signal transduction.
- 6. describe the mechanism of nitrogen fixation in leguminous plants.
- 7. Describe the biochemistry of biological nitrogen fixation.
- 8. Give an account of nitrogen metabolism in green plants
- 9. How do plants absorb nitrogen from the environment? Describe the process involved in the conversion of absorbed nitrogen into protoplasm

- 1. Ammonia assimilation & transamination
- 2. Nitrate assimilation
- 3. Leghaemoglobin
- 4. Ammonification and Nitrification
- 5. Reductive amination
- 6. cGMP

- 7. Second messenger
- 8. Importance of leguminous plants
- 9. Nitrogenase
- 10. difference between Nitrate assimilation & Nitrate reduction
- 11. difference between Reductive amination and tranamination
- 12. difference between Nitrification & denitrification